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The other papers in the symposium have concentrated on the effects of

errors of measurement on various types of correlation measures. In contrast,

the purpose of the present paper is to consider the properties of ANOVA,

regression analyses, ANCOVA, and factor analyses when employed on fallible

variables, i.e., variables which contain errors of measurement. Because

of the broad range of topics to be considered, the discussion of each will

be somewhat brief. For each topic the major problems of concern to the

trier of statistics will be identified; wher available, solutions to the

problems will be indicated; and several of the more important references

will be cited.

Factor analysis is considered first because the primary concern is

with the properties of the elements in the correlation matrix to be factored,

and so perhaps will facilitate a transfer from the preceeding papers. The

topic of regression analysis is considered second because it logically leads

the way to subsequent discussions of ANOVA and ANCOVA. As Fisher (1932) has

said, ANCOVA "combines the Advantages and reconciles the requirements of tae

two very widely applicable procedures know% as regression and analysis of

variance."

Factor Analysis

Although the literature abounds with articles on the theory and use of

factor analysis, few have been concernee with the nature of the correlations

in the matrix to be factored. When discussing the nature of correlation co-

efficients in a matrix to be factored, it is useful to make a distinction

between manifest and latent relationships. Manifest relationships are those
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obtained from variables as they are observed, while latent relationships are

those which "may b..-.: inferred to exist between variables and which are masked

or distorted by various kinds of errors and constraints" (Carroll, 1961,

p. 351). When used as an instrument to fa2ilitate theory building, factor

analysis should operate on a matrix of correlation coefficients which reflect

the latent relationships among the variables.

Carroll (1961) has identified ene following four categories of errors

and constraints which can affect the value ,f a Pearson Product-Moment cor-

relation coefficient:

1, errors of scaling,
2. errors of stale-depsndent selection,
3. scedastic errors of measurement,
4. topastic errov7 of measurement.

Errors of scaling result when a dichotomy is forced on a continuous variable.

An error of scale-dependent selection occurs when the sample is taken such

that subjects with extreme scores on either or both variables are not selected.

Scedastic errors of measurement are those dealt with in classical measurement

theory, i.e. independent of each other and the latent variable with expected

value zero; and topastie errors of measurement are created when a subject

guesses correctly on a multiple choice item.

Carroll states that except for scedastic errors of measurement the

errors and constraints can alter the rank of a correlation matrix and cause

subsequent factor analysis to yield spurious results. The exception made for

scedastic errors probably stems from results given by Roff (1937) and later

supported by Saunders (1948) which indicate that

1. the rank of the correlation matrix, R, is unaffected by
scedastic errors;

3
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2. thL communalir.y of an infallible variable is equal to the
communality of the fallible variable divided by the relia-
bility of the fallible variable;

and 3. the factor pattern matrix of the infallible vp-;lables, F ,

is related to the factor pattern matrix of tie fallible
variables, F, by the equation

F = AF,

where A is a diagonal matrix of the inverses of the
square roots of the reliabilities of the fallible
variables.

As will be pointed out later, the exception made for scedastic errors was

a mistake since the relationships given by Roff are based on the seldom met

assumption that communalities are known rather than estimated.

A matrix of Pearson Product-Moment coefficients for variables containing

errors of scaling generally results in a factor analysis solution which con-

tains a difficulty factor, although Kaiser (1970) has recently indicated that

Guttman's image analysis may not. Carroll (1961) recommends the use of tetra-

choric coefficients to side step the problem of errors of scaling. The problems

of errors caused by scale-dependent selection have not been salved except by

the obvious method of avoiding them via careful sampling procedures. The

procedures of correcting correlations for restriction of range (Guilford, 1959;

Bryant, 1970) raight be useful, but to my knowledge the consequence of using

such corrected coefficients in factor analysis have not been investigated.

Carroll (1961) has given a method of correcting joint and marginal distri-

butions of the observed variables for topastic error, and 1.uggeEts that cor-

relations be calculated on the corrected distributions.

Glass (1966) has indicated the problems with several methods of iactor

analysts which result from scedastic errors. In particular he has shown that

a components analysis of the correlation matrix with ones in the main diagonal

and off diagonal elements corrected for attenuation is not necessarily of the

4
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same order as components analysis of the uncorrected matrix. Factoring

the correlation matrix with Guttman's lower bound Co commanaliiles in the

main diagonal does not result in the relation F* = AF, nor doe:; Rao's

canonical. factor analysis. On the positive side, Glass demonstrated that

F
*
= AF for Kaiser's alpha factor analysis.

3rtefly, alpha factor analysis is an iterative procedure which starts

with a principal axis factorization of the matrix

H1 -1 ,R /)H
1

1 I,

where Hl is a diagonal matrix of the multiple correlation of each variable with

the remaining variables and I is the idontity matrix. As many factors are re-

tained as there are latent roots of the above matrix which exceed one. The

solution is used to calculate new estimates of the communalities which are

used to replace those in H1 to yield H2. The prccedure is repeated until

the estimates of the communalities have converged according to an arbitrary

apriori ctiterion. Glass has shown that by replacing H2-1 with H3-1 = H2-1 A,

alpha factor analysis results in the relationship F* = AF provided that H3 and

H1 will iterate to the same matrix of communalities. A necessary assumption

is that the elements of A satisfy hi
2

< 1/33
2

< 1 for all j, where hj
2

is the

communality of the j th variable. Glass has demonstrated on several well

known examples that the two matrices do converge on the sane parameters. Glass

(1966, p. 559) further derived that "Alpha factor analysis applied to fallible

and infallible variables separately will be equivalent in terms of number of

factors, complexities of corresponding variables, and patterns of simple struc-

ture"; "Normal varimax rotations of F and F* will yield derived solutions F1

and Fi* such that AF1 = F1 *; and "The alpha factor scores for the fallible and

corresponding infallible variables may be considered ideatical."
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The above suggest that a researcher interested in using factor analysis

to investiage the latent structure of variables should first be careful in

his sampling or subjects to avoid possible problems brought on by errors of

scale-depend:lt selection. Second, he should employ Carroll's correction

to the marginal and joint distributions of each pair of variables ..o control

for topastic errors. Third, lie should calculate tetrachoric coefficients on

the corrected distributions to avoia the problem of difficulty factors arising

from errors of scaling. Finally, given the resulting correlation matrix he

should use Kaiser's alpha factor analysis to side step the problem of scedastic

errors of measurement. The use of alpha factor analysis reems to follow

Kaiser's recently stated first principle in dealing with problems of factor

analysis, i.e. "It don't make no never-mind." What is meant by the principle

he says is "that when faced with a crucial decision, don't try to settle it;

rather, avoid it!" (Kaiser, 1970, p. 403).

Regression Analyses

Madansky (1959) identifies three basic types of regression relation-

ships which arc generally referred to, although not always (Lindley, 1947),

as regression, structural, and functional. Regression is defined as the

appropriate relationship for predicting one set of scores from another.

Because tha purpose is to predict one set of scores on the basis of another

set of scores, the relation should be defined by the observations, making

the least-squares estimate appropriate, i.e., the manifest relationship is

of interest. A structural relationship is defined by the true parts of the

variables, when th.: independent variable is random. A functional relation-

ship is also defined by the true parts of the variables, but the independent

variable is fixed, and the true variables are perfectly correlated. These
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lust two types of relationships fall under the general category of latent

relationships and are of interest when theory building or testing is the

objective. Because problems of prediction and the regression relationship

are familiar, and because functional relationships are probably quite rare

in educational research, the following discussion emphasizes structural

relationships. Both Madansky (1959) and Cochran (1968) offer excellent

reviews of the work done on estimating structural relationships.

First mention of the inappropriateness of a least- squares estimate of

the structural relation, when the variables are fallible, was made by

R. J. Adcock (1878). However, in an early review of the problem of esti-

mating structural relations, Roos (1937, P. 7) credits Corrado Gini in Y921

as the first to recognize that "if the errors of X and Y are independent,

then the least- squares B is larger than the 6 of the actual line of best

fit." Since then, a considerable body of literature has dealt with the

problem of estimating the structural relation when both variables are

fallible.

In the first half of a paper by Berkson (1950), the 1)roblem of esti-

mating a structural relation is stated, and an analytic demonstration of

the bias of the least-squares solution is Riven for the case of scedasti:

errors of measurement. Berkson's demonstration shows that the 6 defined

by a fallible dependent variable, Y, and a fallible independent variable,

X, is equal to the defined by the true parts, multiplied by the ratio

of the variance of the true parts of X over the variance of the true parts

of X plus the variance of the error parts of X. In the notation adopted

here

13Y.X =
o 2

02 +'02
Z.'. + 0

T ti
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where T denotes the true parts of X. The ratio which defines the bias of

the least-squares 3 is equivalent to the measurement theory definition of

the reliability of X (Culliksen, 1950, p. 25). Thus

6Y.X XXI3Y.T '

where oxx denotes the reliability of X. It should be noted at this point

that the bias does not depend on the dependert variable, Y, and therefore,

the fallibility of Y does not affect the least-squares estimate of tile

structural relation. Rather than offering Berkson's derivation, e deri-

vation which is consistent with measurement theory seemed more appropriate.

Let pyT be the correlation of Y and T, and pxy be the correlation of

Y and X.

F3Y.X PYX (1Y

cYX

but pyx = iprx pyT , (Gulliksen, 1950, p. 105)

and o
X

=

-77

Therefore, P. = P P (3YY.X YT XX

°T

and Py.x
PXX f3Y.T.

Because the expected values of the fallible variables are equal to the expected

values of the infallible variab1.1

aYX c4Y.T (13y.T E(X)

where a defines the Y intercept of the regression line.

Under the same classical model for errors of measurement but in dif-

ferent notation, Cochran (1970) gives the relationship between the manifest

and structural multiple regression equations as

Y.Xi 8Y.T4
j=1

(1-°X X ) 8Y.T
j

8
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where i=1, k denotes whicl, independent variable. The relationship

between Inc rlarafesi and structural. intercepts is

k

a' - n + X (I; - ) E(X ),
=4 rj

Y.X

where a' denotes the manifest intercept and a denotes the structural intercept.

For k=1 the above relationships reduce to those given earlier for a single

independert variable. Cochran concludes that the direct effect of errors A

an independent variable is to decrease the absolute value of its associates

13 weight by at least a factor of its reliability coefficient, Cochran (19'58)

has also given a statement of the above relationships under a slightly les

restricted model for errors of measurement. Lindley (1947) has demonstrated

that even when the structural relationship is linear, the manifest relat-Yon-

ship need not be linear. If the infallible variables are multivariate nrr-

mal then the errors of measurement must also be multivariate normal to assure

a linear manifest relationship.

Karl Pearson (1901) offered the first approach to gain any promin:Bnce

for estimating structural relations, using fallible variables. Pearson.

proposed minimizing the sum af the squared normal deviates of the obFr2cved

points from a line which haE come to be called the orthogonal regression

line. Allen (1939) has sho,:n that an orthogonal regression line is depen-

dent upon the choice of units used in measuring the variables. The ortho-

gonal regression line can always Le the structural relation, if the cnits

chosen to measure the variables happen to be the right ones. There 1,..s no

practical way of determinirg what the units should be without additianal

information (Allen, 1939, p. 198). C. F. Roos (1937, p. 18) offers;an

orthogonal regression line solution, which is invariant to the metr:x of

the variables but requires apriori information about the magnitude the

errors.

9
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Most of the developmts since Pearson can be placed in one of the

four categories: the method of grouping, the use of instrumental vari-

ables, the use of variance components, and the Berkson case. To supply

detailed information about the various types of estimates would not be

appropriate here, but a brief acquaintance with one of the more popular

techniques in each category should provide helpful background.

Wald (1940) provides a method for estimating structural relations,

based on the method of grouping. Letting X denote the independent variable

and Y the dependent variable, Wald makes the following assumpticns:

1. Errors on X are uncortelated and have a common distribution,

2. Errors on Y are uncorrelated and have a common distribution,

3. Errors on X are uncorrelated with errors on Y,

4. There is a single linear relation between the true variables,

5. Observations on X, can be divided into subgroups in sich a
way that the true part of any observation will be in the
same subgroup as its associated .pserved score.

The location of the line, identifying the structural relationship, is

estimated by the mean coordinates. To estimate slope, Wald first orders

the observations on X and dieides them into two g-oups of equal size. The

joih of the mean coordinates of the tvo groups provides the estimate of

slope. Wald derived the variance of the above estimate of a structural

relation and provided a test of hypotheses about the size of the slope.

Wald demonstrated that his estimate ti structural relation is a consistent

estimate and that the hypothesis test is exactly corres .:-. if the assumptions

are satisfied.

Barlett (1949) extended Wald's estimate by proposing that the sub-

groups for estimating slope be the upper and lover one-third of the ordered
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X values. Bartlel:t provides confidence interval estimate:. for his ,2stimtc

of slope and shows that, when X has E rectangular distribition, the esti-

mate is more efficient than Wald's. More generally, the efficiency of a

criterion for grouping is dependent upon the distribution of the indepen-

dent variable. For a normally distributed independent variable, Madansky

(1959) has shown that the most efficient criterion for grouping is to use

the upper-lower twenty-seven percent. Madansky (1959, r, 184) offers a

table, which indicates the most efficient criterion for grouping several

different types of distributions. Besides being depeminit upon the dis-

tribution of the ine.ependent variable, the method of grouping further

requires knowledge that the errors of the independent variable are in-

dependent of tie grouping. Without this additional information, the

estimates are not necessarily consistent (Heyman, 1951:.

Reierso'. (1945) origiliated the strategy of using instrumental

variables in tie estimation of structural relations ani the approach has

since been developed by others. An approach, taken by Durbin (1954),

represents the simplest use of an instrumental variable, although probably

the least often applicable. The assumptions are the Fame as the first

four giv n, it regard to the method of grouping. Let z be an infallible

instrumental "ariable which is correlated with the true parts of the

independent variable but not with the error parts. Then

N
E ziYi

b 1=1

N
E ziXi
i=1

is a consistent estimate of the structural relation of Y on X. Durbin offers

a proof of b's consistency and derives a confidence region for the parameter

11



of the structural relation by making use of the fact that true regression

Y - 0
X

on z is zero. As would be expected, Durbin's estimate is less

efficient than a least-squares estivate, based on the unobservable true parts

of the fallible variables.

Reiersol (945) has considered the estimation of structural relations,

using fallible inscumental variables. Reiersol's estimate requires obser-

vations on two instrumental variables, both of which are correlated with

the true parts of the independent variable, but not with the .:ror parts,

and further states that these instrumental variables have some known

linear relation.

Geary (1949, p. 30) states that the accuracy of using instrumental

variables to estimate structural relations is dependent upon the correlation

of the instrumental variables with the dependent and independent variables.

Even if instrumental variables can be identified as having the required

properties, which in itself seems unlikely, their use represeW:e additional

cost. Madansky (1959, p. 188) identifies Durbin's use of an infallible

instrumental variable as equivalent to the grouping method, when the instru-

mental variable is restricted to the values -1, 0, and +1.

The variance components procedure for estimating structural relations,

using fallible variables, began with Tukey (1951), and requites additional

information, similar to that necessary for grouping. The data must be in

the form of ni observations, Xij, on each of N Xi's, i.e., two or more

groups must be identified into which the data may be divided. The pro-

cedure is to do one-way analyses of variance on the variables X, Y, and

XY, as in an analysis of covariance. The mean squares and expected wean

squares of the computations are given in Table 1. (Madansky, )959, p. 189).

12
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An inspection of the expected mean squares in In'Oe I indicates

b= III - VI

I IV

is an estimate of the structural relation of Y on X. Tukfq show--; the estimate

to be consistent as N 4 and some ni 4 and provides confidence intervals

for S, both in the case of a functional re3 and in the case of a struc-

tural relation.

Berkson's method (1950) for estimating structural relations is dependent

upon his sampling model which die:inguishes between a "controlled observation"

and an "uncontrolled observation." Let x = X + u be an observation on the

fallible independent variable, brokers down into a true part X And an error

part u; and similarly, let y = Y + v be a fallible observation s,.1 the depen-

dent variable. An "uncontrolled observation" on the fallible independent

variable is defined as X being fixed, and u being a random variable, inde-

pendent of X. The structural relation is Y = a + OX and by substitution

y = a + Bx + (v - Bu). The above equation is not a standard regression

model because the random error (v - Sul is not independent of x. The

purpose of taking a "controlled observation" is not to estimate X, but

rather, to bring the observed quantity to a set value. The attempt is

to get x each time al observation is made, but because of errors of

measurement, the observation represents x - u. The sampling model causes

X to vary whiJe x remains fixed; therefore, u is independent of x. Since

for a "controlled observation" the error of measurement is independent of

the obse-vat",o, the least-squares estimate of slope is also an unbiased

estimate of the structural relation. A fixed x also eliminates the popu-

lation correlation of x and y, which means the regression line y nn x is

the same as the regression line x on y. Scheffe (1958) offers a slight

13
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TABLE 1

Tukey's Variance Components*

Meat Square Expected Mean Square

I

III

N - 2

E ni(Xi -X..) / (N-1)
i=1

2.. n.67 --i )(T )

1=1

n.(ii - ) / (N-1)
i=1

IV

V

VI

G
2

+ (N
2

- L n
2

) / (N,1-0) a
2

u i=1

((N2
N 2

cov(u,v) + ((N - E ni) /
i=1

(Nn -u)) Sat

Nz

a
2
+ [(N2 - E n

2
)/(Nn-n)jea2

i=1

N ni
E E (Xij-Xi.)

2 / (N-1) a
2

N
E E

i=I i=1

/(N -1)

N ni

E r (Y
ij 1.

)2 / (N-1)
i=1 j=1

cov(u,v)

a

*
u = error part of X

v = error part of Y

14
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modification of Berkson's model by allowing u and v to be independent

variables, with variances 02
X

and a2. The modification is dependent

upon the manner in which replication is achieved. Scheff'S supposes that

replicates are taken by changing the controlled bariable from its pre-

vious value and bringing it back for each replicate; whereas Berkson

assumes the controlled variable remains unchanged. Scheffe develops

confidence intervals for the slope and intercept, under the assumptions

of his restatement of the Berkson case.

ANOVA and ANCOVA

The effects of scedastic errors of measurement in ANOVA are the same

as they are in ANCOVA with a fallible dependent variable and an infallible

covariable. Because scedastic errors have an expected value of zero and

are independent of the true parts of the variable, the least squares pro-

cedures of ANOVA provide unbiased estiriates of the parameters in its linear

model. In ANCOVA the least squares estimate of the slope of the structural

relation of the dependent variable on the covariable is unbiased if the co-

variable is infallible, as seen earlier, and so the least squares procedures

of ANCOVA also provide unbiased estimates of the parameters in its linear

model. Cochran (1968) has considered the problem of estimating the parameters

in the linear model of ANOVA for a less restrictive model c: errors of measure-

ment and comes to the same favorable cor,Ausion.

GI.,,en the usual assumptions, the F test statistics for ANOVA on a fal-

lible dependent variable and the F t'.st statistics of ANCOVA on a fallible

Cependent variable and an infallible covariable will follok theoretical F

distributions. The only detrimental effect that scedastic errors of measure-

ment in the dependent variable have is to decrease precision and thus increase

15
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the probability of a Type II error. For ANOVA the decrease in precision is

seen by the equation

o
2
= 02+ o

2
,

where a
2

denotes the variance of the fallible dependent variable, o
2

is the

variance of the infallible dependent variable which is inflated by a2 the

variance of the errors of measurement. The error variance of a one-way

ANCOVA is

0
2
(1 p

2
1 [1 +

XY' f-2
e

where
N

2
is the variance of the fallible dependent variable

' XY
p is the cor-

relation of the fallible dependent variable with the infallible covariqble

and f
e
denotes the degrees of freedom for estimating error variance. The o

2

term is inflated by errors of measurement in the same way as shown above for

ANOVA. Further, pxy is attenuated by errors of measurement in Y. Both

effects cause a loss in precision due to a fallible dependant variable.

Sutcliffe (1958) has derived the expected mean squares for a one-way, fixed

effects ANOVA for a fallible dependent variable. By using his table of ex-

pected mean squires, Sutcliffe points out the increase in the probability

of a Type II error caused by 6te errors of measurement. lox (1961) has

considered whether the ANOVA least squares methods employed on falliLle

variables provide unbiased estimates of error variances in factorial and

fractional factorial designs. He concludes that the estimates are unbiased

for both high order interactions and the pooled variance of replications

within

The use of a fallible covariable In ANCOVA can cause a far more dis-

tressing problem than decreased precision. First, consider the linear model

16



of a one-way fixed-effects ANCOVA with a single random covariable. Note that

a random covariable represents a relaxing of the restriction in the classical

model that covariables be fixed. DeGracie (1968) has shown that the usual

ANCOVA procedures applied to data with a random cavariable still provide un-

biased estimates of the parameters in the linear model as well as valid test

statistics. The only difference from classical results is that the variances

of the various estimates are a,,,eraged across all values of the covariable. A

random covariable is certainly more representative of practice in educational

:esearch than is a fixed covariable. The linear model is

Yij PY.. 6Y.X(Xii VX.) eii'

where Yij and Xij are the i th observations in the j th treatment for the

dependent and covariable respectively,

py.. is the constant for true mean response,

aj = uY - 3y.x (Px.i Px..) is the j th treatment effect,

Y.X
is the common within treatment slope of the regression of Y on X,

and are random variables assumed to be normally distributed independenteij

of each other with zero mean and comr,, variance,

ANCOVA is employed as a method for gaining precision is designs

where experimental units are randomly assigned to treatments and where the

covariable is observed antecedent to the experiment, py = p for all
X.j!

j j', and the treatment effects, a.j, reduce to those for ANOVA, i.e.

p/ - py.. The only negative effect of a fallible covariable beyond that

of a fallible dependent variable is a furth4r attenuation of px, causing a

lost.; in precision as seen earlier. However, when ANCOVA is used in attempt

to control for systematic initial between group differences on the covariable,

1?
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in general w, # and the treatment effects will reflect the nature

of the correction term

Y.X X

This second use of ANCOVA has become common p-actice in educational research

since suggested by Campbell and Stanley (1963) for use on their quasi-

experiments. Lord (1960), Smith (1957) and Thorndike (1942) as well as several

others more recently have recognized that even though X and Y are fallible,

the repression line telcvant to ANCOVA is the structural relationship. Since

Y.)( PXOY.T '

the usual ANCOVA procedures provide and test biased estimates of the treatment

effects when IA
X

P
X 1.

Further, by pugging in different possible values
.j

of PXX' fiy.T , and tlj it is seen that usual ANCOVA procedures can provide

non zero treatment effects when thp actual effects or zero or zero treat-

mew: effects when the actual treatment effects are non zero. (Porter, 1967)

Lord (1960) offers a graphic deffanstration of the same problem.

Lord (1960) as the first to provide a statistical procedure that yields

and tests unbiased estimates of the correct treatment effects -Alen analyzing

data from quasi experiments having a fallible dependent variable and a fallible

co-- variable. His test statistic is asymptotically distributed normal and is

limited to consideration of only two levels of the independent variable.

The necessary data are observations on the dependent variable and duplicate

observations on the covariable, where the duplicate measures follow the

test-retest paradigm of classical measurement Cleory.

I have developed another approach to the prablem of obtaining and

testing unbiased estimates of the correct treatment effects when analyzing

18
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data from quasi experiments having a fallible dependent vaciable nnd a

fallible covariable. At least computationally my procedure can be used

in any design where classical ANCOVA can be used (Porter, 1967 and 1968).

Essentially the procedure I have suggested and investigated substitutes

an estimated true score covariable for the observed fallible covariable

and then employs classical ANCOVA procedures. The estimated true score

variable in a one way ANCOVA is defined as

T.. = .

.3
+ p

XX
(Xij - )

13

For more complex designs the estimated true score covariable would follow

the same form except that the observations would be deviated from the

respective cell means. The important properties of an estimated true score

covariable are that it is a linear transformation of the fallible covariable

and

1) has the same treatment group and grand means as the fallible
and unobserved infallible covariable,

2) has the same correlation with the dependent variable as does
the fallible covariable,

and 3) the slope, SY.T , is equal to the desired slope of the

structural relation, fly.T .

From the above three points it follows that use of classical ANCOVA on

the fallible dependent variable and the -stimated true score covariable will

provide unbiased estimates of the treatment main effects

PY.. 8Y.T(PX PX..) '

nd that the F test statistic will follow the theoretical F distribution

given the usual. assumptionsof ANCOVA plus the assumption that the reliability

of X is common across all treatment groups. When the reliability of X is
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nut known, an estimate must he used which interduces as additional sour...e

of variation into the model. With the additional source of variation due

to estimating p
XX'

ANCOVA using estimated true scores as the covariable

no longer conforms to the classical model and the distribution of the F

test statistic must be questioned. Also of interest is a comparison of

the small sample properties of Lord's procedure to the one I have proposed

when there are only two levels of the treatment independent variable.

In a recent study (Porter, 1967) I used the Monte Carlo approach to

investigate the effects of sample size, the reliability of the covariable,

and the correlation of the dependent variable with the covariable on the

small sample properties of Lord's :statistic and on the distribution of the

F statistic calculated from ANCOVA using estimated true scores as the co-

variable. The ANCOVA procedure was investigated for both two and four

levels of the independent variable. Each empirical distribution was based

on 1000 values (4 he test statistic and the method for estimating relia-

bility conformed to the test retest paradigm suggested by Lord. Further,

the covariable was random.

The results indicated that when the reliability of the covariable was as

low as .5, the distributon of Lord's statistic was a very poor approxima-

tion of the normal distribution. As the reliability of the covariable in-

creased, the number of observations per treatment group necessary for a

good approximation became less. The size of the correlation of the covariable

with the dependent variable had an inverse effect on the rapidity of con-

vergence. Samples of site 20 or greater per treatment group seemed to pro-

vide for sufficient convergence of Lord's statistic for intermediate values

of reliability and correlation. A sample size, larger than 20, was necessary

in order for the distribution of Lord's statistic to converge upon the normal

when reliability, correlation, or both were low.

20
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The analysis of covariance, using estimated true scores as a covariable,

also required samples of size 20 or larger per treatment group for tha then-

retical F to serve as a useful reference distribution. For covariab-!.e having

reliability of .7 or .9, the generated distributions of F based on analysis

of covariance using estimated true scores as the covariable were in close

agreement with the corresponding theoretical distributions of F. then the

reliability of the covariable was .5, the agreement of the generatd dis-

tributions of F to their theoretical counterpart, were not quite a3 good,

but still close. The degree of agreement suffered a greater decrease caused

by a decrease in the reliability of the covariable for analyses involving

four treatment groups than for two trea :ent groups. For analyse:; involving

only two treatment groups the size if the correlation of the dependent vari-

able with the covariable did not have a systematic effect on the degree of

agreement of the generated distributions of the F statistic for analysis of

covariance using estimated true scores as the covariable with the theoretical

F distribution. However, when using four treatment groups, an icreask. in

the correlation of the dependent variable with the covariable cause a syste-

matic decrease in the agreement of the generated distribution with the theo-

retical distribution.

The analysis of 1:ovariance using estimated true scores for the co-

variable appeared to ba ors useful a method for testing hypotheses as Lord's

statistic. The genera:ed probabilities of a Type I Error for twr-tailed

tests were in clone agreement with the theoretical probabilities for both

test statistics. A slight negative skewness for generated distributions

of Lord's statistic caused the probabilities of a Type I Error for one-

tailea tests systematically to exceed tree probabilities of a Type I Error

21
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for two-tailed tests. sower was essentially the sam^ for bWli test statistics.

The use of estimated true scores was slightly more powerful for the two ex-

treme levels of reliability, .5 and .9, of the covariable, and Lord's statistic

was slightly more powerful for the intermediate level, .7.

The results clearly indicated the utility of Lord's statistic and my

Procedure of ANCOVA using estimated true scores as the covariable, when

analyzing data from a quasi experiment where the variables are fallible.

They also supported the greater generality of thn modified ANCOVA procedure.

Thistletnwaite (1969) and Campbell and Erlebacher (1970) provide illustrations

of the use of ANCOVA using estimated true scores as the covariable. DeGracie

(1968) has more recently proposed a test statistic which he points out is

similar to the one that I have proposed and investigated, ?nit w'tich an

asymptotic normal distribution.

As a final note of caution none of the above mentioned analyses pro-

vides a completely satisfactory substitution for random assignment of ex-

perimental units to levels of the independent variable. Although tl-ey pro-

vide and test estimates of the treatmeat effects after controlling for

differences on tie covariable, there is no guarantee

tii tie covariabh: reflects all important initial letween levels off-

ferences, i.e., all of the above mentioned procedures suffer from tae same

limitations that apply for ANCOVA on infallible variables. Two excellent

referenc,_s on such limitations ate provided by Smith (1957) and Lord (1967).

Elashoff (1969) also points out th'n limitations of ANCOVA when raneom as-

signment has not been used in the oosign as well as several other limitations

of ANCOVA. Informally Lee Cronbach, Donald Campbell and 1 (Campbell and Erle-

bacher 1970,Errata) have con9idered the pro6.em of choice among covariates
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where the intent is to use the covariate to control for the problem of con-

founding variables. Unfortunately our thoughts are at too prelimtlary a

stage to be reported here.

Sumnary

In this paper problems caused by the existence of errors of measure-

ment have been identified for factor analysis, regression analysis, ANOVA,

and ANCOVA. At least one detrimental effect was seen to exist for each

type of analysis. When a researcher's interest wLth infallible variables,

he rune the risk of biased results from all of the procedures except ANOVA.

The estimates of parameters in all four procedures suffer from inflated

error variance. Some partial solutions were indicated, but clearly mote

work is needed on several of the problems.

Most statistical procedures have been developed for models where

variables are assumed to be free from errors of measurement. Since almost

all educational research involves use of 2allible variables, it is impor-

tant that the effects of errors of measurement for the various models he

understood and that the understanding be reflected in current research

practice.
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